VisualClozePipeline-384

VisualClozePipeline-384 is one of the models compatible with diffusion models within the VisualCloze framework for image generation with visual context.

Key Features of VisualCloze:

  • Supports diverse tasks within the domain and generalizes to new, unseen tasks.
  • Combines multiple tasks in a single step, generating both the target image and intermediate results.
  • Enables reverse generation — restoring a set of input conditions from a target image.

This model was trained with a resolution of 384. The resolution parameter ensures that all images are resized to the specified dimensions before processing to avoid out-of-memory errors. For high-resolution image generation, we use the SDEdit technology to upscale the generated results.


Announce Date: 15.05.2025
Parameters: 0B
Context: 77
VRAM requirements: 8.1 GB using 4 bits quantization, 16.2 GB using 8 bits quantization, 32.4 GB using 16 bits quantization
Developer: VisualCloze
License: Apache 2.0

Public endpoint

Use our pre-built public endpoints for free to test inference and explore VisualClozePipeline-384 capabilities. You can obtain an API access token on the token management page after registration and verification.
Model Name Context Type GPU TPS Status Link
There are no public endpoints for this model yet.

Private server

Rent your own physically dedicated instance with hourly or long-term monthly billing.

We recommend deploying private instances in the following scenarios:

  • maximize endpoint performance,
  • enable full context for long sequences,
  • ensure top-tier security for data processing in an isolated, dedicated environment,
  • use custom weights, such as fine-tuned models or LoRA adapters.

Recommended configurations for hosting VisualClozePipeline-384

Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
teslat4-1.16.16.160
77.0
16 16384 160 1 $0.33 Launch
rtx2080ti-1.10.16.500
77.0
10 16384 500 1 $0.38 Launch
teslaa2-1.16.32.160
77.0
16 32768 160 1 $0.38 Launch
teslaa10-1.16.32.160
77.0
16 32768 160 1 $0.53 Launch
rtx3080-1.16.32.160
77.0
16 32768 160 1 $0.57 Launch
rtx3090-1.16.24.160
77.0
16 24576 160 1 $0.88 Launch
rtx4090-1.16.32.160
77.0
16 32768 160 1 $1.15 Launch
teslav100-1.12.64.160
77.0
12 65536 160 1 $1.20 Launch
rtxa5000-2.16.64.160.nvlink
77.0
16 65536 160 2 $1.23 Launch
rtx5090-1.16.64.160
77.0
16 65536 160 1 $1.59 Launch
teslaa100-1.16.64.160
77.0
16 65536 160 1 $2.58 Launch
teslah100-1.16.64.160
77.0
16 65536 160 1 $5.11 Launch
h200-1.16.128.160
77.0
16 131072 160 1 $6.98 Launch
Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
teslat4-1.16.16.160
77.0
16 16384 160 1 $0.33 Launch
rtx2080ti-1.10.16.500
77.0
10 16384 500 1 $0.38 Launch
teslaa2-1.16.32.160
77.0
16 32768 160 1 $0.38 Launch
teslaa10-1.16.32.160
77.0
16 32768 160 1 $0.53 Launch
rtx3080-1.16.32.160
77.0
16 32768 160 1 $0.57 Launch
rtx3090-1.16.24.160
77.0
16 24576 160 1 $0.88 Launch
rtx4090-1.16.32.160
77.0
16 32768 160 1 $1.15 Launch
teslav100-1.12.64.160
77.0
12 65536 160 1 $1.20 Launch
rtxa5000-2.16.64.160.nvlink
77.0
16 65536 160 2 $1.23 Launch
rtx5090-1.16.64.160
77.0
16 65536 160 1 $1.59 Launch
teslaa100-1.16.64.160
77.0
16 65536 160 1 $2.58 Launch
teslah100-1.16.64.160
77.0
16 65536 160 1 $5.11 Launch
h200-1.16.128.160
77.0
16 131072 160 1 $6.98 Launch
Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
teslat4-3.32.64.160
77.0
32 65536 160 3 $0.88 Launch
teslaa10-2.16.64.160
77.0
16 65536 160 2 $0.93 Launch
teslaa2-3.32.128.160
77.0
32 131072 160 3 $1.06 Launch
rtx2080ti-4.16.64.160
77.0
16 65536 160 4 $1.18 Launch
rtxa5000-2.16.64.160.nvlink
77.0
16 65536 160 2 $1.23 Launch
rtx3090-2.16.64.160
77.0
16 65536 160 2 $1.67 Launch
rtx4090-2.16.64.160
77.0
16 65536 160 2 $2.19 Launch
teslav100-2.16.64.240
77.0
16 65535 240 2 $2.22 Launch
teslaa100-1.16.64.160
77.0
16 65536 160 1 $2.58 Launch
rtx5090-2.16.64.160
77.0
16 65536 160 2 $2.93 Launch
teslah100-1.16.64.160
77.0
16 65536 160 1 $5.11 Launch
h200-1.16.128.160
77.0
16 131072 160 1 $6.98 Launch

Related models

Need help?

Contact our dedicated neural networks support team at nn@immers.cloud or send your request to the sales department at sale@immers.cloud.